Strette di mano incrociate e non incrociate

Questo post nasce dopo la cena di ieri sera. Gli amici Angelika e Vadim, una simpatica coppia moldava, sono stati da noi per una pizza. Una volta varcato l’ingresso è stato il turno dei saluti e – come spesso accade in questi casi – si è creata una situazione di incrocio. In passato mi sarà capitato altre mille volte (e lo stesso sarà accaduto a chi legge), tuttavia questa volta ho sentito il bisogno di metterci dentro un po’ di matematica.

Ho intitolato il post in questo modo anche se i saluti non necessariamente si svolgono sotto forma di strette di mano. È uso scambiarsi una stretta di mano tra uomini (sia tra conoscenti che tra sconosciuti); tra donne prevale la stretta di mano quando non ci si conosce e il bacio in caso di amicizia; idem tra uomo e donna. Questa almeno è la convezione diffusa qui in Padania. Scendendo nella vicina Italia (in particolare nell’Italia meridionale), e ancor più passando dall’Italia alla Sicilia, il bacio tende a diffondersi anche tra gli uomini, specie se conoscenti.
In ogni caso in termini matematici il problema è equivalente allo scambio di strette di mano simultanee tra un numero pari* di soggetti disposti simmetricamente** attorno a un tavolo rotondo.

Mi sono domandato: quanto è probabile incorrere in una situazione di saluti incrociati?

Per fare ciò prima di tutto è necessario calcolare le configurazioni di coppie di possibili strette di mano. Partiamo da un caso semplice***: quattro persone intorno a un tavolo che occupano le posizioni est (E), nord (N), ovest (O) e sud (S). Le configurazioni simultanee sono tre:

O-N, S-E
N-E, O-S
S-N, O-E

Le prime due non danno luogo a incroci, la terza sì.

Si tratta ora di capire cosa succede quando le coppie salgono di numero, cioè quando intorno a un tavolo ci sono 6, 8, 10, …, 2n persone.
Si può dimostrare abbastanza agevolmente che le configurazioni possibili (S) sono:

S(2n) = (2n – 1)(2n – 3)*…*5*3*1 = (2n – 1)!!

Il doppio punto esclamativo indica il semifattoriale, talvolta chiamato fattoriale doppio, con una delle espressioni più ambigue e infelici di tutta la matematica. Quando il semifattoriale è applicato a un numero dispari si può passare al fattoriale mediante la formula seguente:

(2n – 1)!! = (2n)!/(n!2n)

Da cui deduciamo che con sei persone attorno al tavolo le possibili configurazioni di strette di mano simultanee sono 15. Queste diventano 105 con otto persone, 905 con dieci persone, 10.395 con dodici persone, ecc.

A questo punto dobbiamo determinare il numero di configurazioni di strette di mano che non si incrociano (s). Di fatto ciò equivale a calcolare il numero di corde non intersecantisi che connettono 2n punti disposti su una circonferenza. Si tratta di uno dei numerosi risultati matematici che chiamano in causa i numeri di Catalan.

s(2n) = (2n)!/(n!(n + 1)!)

I valori sono s(2) = 1, s(4) = 2, s(6) = 5, s(8) = 14, s(10) = 42, s(12) = 132, …

La probabilità di incorrere in un saluto incrociato, ciò che mi ero proposto di calcolare, è dunque data dal complemento a 1 del rapporto s/S:

P(2n) = 1 – s(2n)/S(2n) = 1 – 2n/(n + 1)!

P(2) = 0%
P(4) = 33,33%
P(6) = 67,67%
P(8) = 86,67%
P(10) = 95,56%
P(12) = 98,73%

Come si nota, la probabilità di incorrere in una stretta di mano incrociata aumenta molto rapidamente. I casi più frequenti sono i saluti tra 4 e 6 soggetti; nel primo caso la probabilità di un saluto incrociato è una su tre, nel secondo raddoppia a due su tre. La matematica, dunque, dimostra che l’elevata frequenza con cui si verificano situazioni di questo tipo è del tutto normale.

_____
* se i soggetti fossero dispari verrebbe meno la condizione di simultaneità

** una disposizione simmetrica non è un vincolo necessario, tuttavia è utile per visualizzare meglio le diverse configurazioni

*** se le persone sono due (caso banale) c’è una sola configurazione possibile: una stretta di mano non incrociata

Advertisements

1 Commento (+aggiungi il tuo?)

  1. banzai43
    Feb 20, 2017 @ 22:20:12

    …. meglio non essere in coppia.
    Buon inizio settimana.
    banzai43

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...